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Signal and background separation
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In many areas of research the measured spectra consist of a collection of “peaks” — the sought-for signals
— which sit on top of an unknown background. The subtraction of the background in a spectrum has been the
subject of many investigations and different techniques, varying from filtering to fitting polynomial functions,
have been developed. These techniques yield results that are not always satisfactory and often even misleading.
Based upon the rules of probability theory, we derive a formalism to separate the background from the signal
part of a spectrum in a rigorous and self-consistent manner. We compare the results of the probabilistic
approach to those obtained by two commonly used methods in an analysis of particle induced x-ray emission
spectra[S1063-651X%99)10206-X]

PACS numbd(s): 02.50.Rj, 07.60=j, 29.30.Kv

I. INTRODUCTION fitting process. Modern methods tend toward the elimination
of the background by digital filterinf8,9] or stripping[10],
The analysis of spectra is generally hampered by the pregvoiding any assumption regarding the functional form of
ence of noise and an unknown background. This is especialliie background.
true for particle induced x-ray emissiofPIXE) spectra, In basic polynomial fitting routines the largest problems
where projectile and secondary electron bremsstrahlung leatfere the unstable nature of the fits, mainly due to the addi-
to a significant background. We will therefore use PIXE tion of more degrees of freedom to the nonlinear fitting pro-
spectra as real-world test examples. gram. These problems were alleviated by using polynomials
The central problem to be tackled in this paper is besWith some physical basis, as well as by empirical improve-
explained using the PIXE spectrum depicted in Fig. 1. Itments to the functions. Nonlinear fitting programs simulta-
consists of a fairly smooth background plus signal with bothneously determine the signal peaks and the coefficients of the
very large as well as small peaks which are comparable iRackground polynomials based on iterative least squares
height to the background. The goal is to determine the backMethods. The expansion order of these polynomials were
ground part of the spectrum, and by eliminating it from thetypically less than 10, increasing the number of degrees of
data points to infer the desired signal. The problem falls intdreedom by that number. This often led to unstable fits, with
the realm of inductive logic which tells us how to deal with & resulting increase in analysis time with human input to
partial truth: We have experimental data, a vague theoreticdorrect the procedure. _
conception, and additional prior knowledge. The information  Digital filtering is based on the convolution of the spec-
is, however, not stringent enough for a unique reg@aye-  trum with a top-hat filter, as in theupix program(8], or a
sian probability theory(BPT) [1,2], or as Jaynef3] appro-  frequency _d|fferent|ated nonlinear digital filtef‘rolling
priately called it “the logic of science,” provides the consis- Pall”), as in the program used at the Schonland Research
tent frame to exploit all bits of information rigorously. A Center in Johannesbufg]. The top-hat filter has a central
nice tutorial type of introduction to BPT is given by Sivia in
his bookData Analyss — A Bayesian TutorigK]. 2000
Before discussing the details of the probabilistic ap-
proach, we want to mention that several techniques are avail-
able for determining the background in a spectrum. The tra- 1500 |
ditional method is to estimate the background by fitting a set
of “semiempirical” polynomial functiong5,6] to the data
while limiting the expansion order to keep the fit from being
influenced by sharp peaks in the spectrum. These techniques
have been optimizel@] by the use of orthonormal basis sets
for the fitting functions, with initialization routines that im- 500 |
prove initial guesses of the functions and their coefficients
for the final fitting during the full nonlinear least squares
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upper lobe consisting of a number of positive coefficientsbackground is ensured by expanding it in an appropriate set
and two negative outer lobes each having a number of negaf basis functionss,(x),

tive coefficients. The convolution replaces the data content c e

of every channel by this convolving filter. The width of the

filter is based on the energy resolution of the measurement, b= Zl ¢>V(Xi)CV:V21 D;,c, @

and therefore is effective in areas where the background

changes linearly over any region of around 400 eV, which isor in vector notatiorb=dc. HereE is the expansion order,
generally a good approximation. which is part of the parameter liBl. The basis set which we

In the “rolling ball” method[9] the differentiated nonlin-  will employ in the examples are either Legendre polynomials
ear digital filter is the equivalent of rolling a ball below the or cubic splines. The formalism is, however, valid for any
data points and marking out the background as the locus dfasis set and for other applications a different basis might be
the ball at each point. To account for the varying peak widthmore appropriate. The probability for the background vector
of the energy spectra, the diameter of the ball gradually inb is
creases as a function of energy. The mathematical functions
involved are relatively simple arithmetic functions that can _ E
be efficiently compui/ed. 'IE)here is some distortion of the p(b|d,cr,H,I)—f d“c p(ble.d,en 1. 7)p(cld,0,11.7)
peaks, but this does not adversely affect the results.

The stripping of the peaks in GeoPIXEO0] is based on
estimating the background by iterative suppression of the
counts in channels containing peak information. These tech-
niques are less efficient in areas where the background shapgere we have used the probabilistic marginalization rule
changes relatively quickly, leading to overfiltering or strip- [4]. According to Bayes’ theorerfil2,4], the desired prob-
ping in that case. The advantage of filtering and stripping isability p(c|d, o,T1,Z) can be expressed as
the elimination of extra free parameters in the nonlinear fit

routine in the analysis program, and the relative robustness 1
of these techniques. p(cld,o.I1,7)= zp(d|0, oI D)p(coII). (3

:f dEc 8(b—®c)p(c|d, o,I1,7), (2

The Bayes theorem splits the problem into the likelihood
Il. BAYESIAN APPROACH p(d|c,a,I1,7), i.e., the error statistics of the experiment and
the priorp(c|o,I1,Z). The latter is the place to feed in all we

sults of unpredictable reliability. A first consistent probabi- know about the solution irrespective of the experimental
P Y P data. The normalizatiod can most easily be derived in the

listic approach had been suggested by1H{ to separate the . E _
signal from the noise and the background and at the sameend by making sure thafid"c p(c|d, o, I1.7)=1.

time deconvolve the apparatus function within quantified _ N

maximum entropyQME). The main goal there was to de- A. Prior probability

rive a formalism which still allows the use of standd&cdm- We assume that the discriminating feature of the back-
mercia) QME packages with merely modified input. In re- ground is its smoothness. Consequently, the global first de-
turn we had to put up with a couple of approximations. Hererivative is a characteristic quantity appropriate as testable
we will present the full probabilistic approach leaving the information[13,14). Hence the prior probability according to
framework of QME. The basic idea is best explained guidedhe maximum entropy principlgl3,14 becomes

by the PIXE spectrum mentioned in Fig. 1. Intuitively, one
has a fairly clear conception of the essence of the back-
ground. Our intuition tells us the following: Find the regions
of the spectrum that have no signal contribution, and fit a
smooth function to the so-determined background datavhereb’(x;) stands for the slope of the background at point
points. How can this idea by quantified? The answer is prox;. The hyperparametgr will be marginalized below. The
vided by BPT[1,2,4. Here, we are seeking the probability expansion in Eq(1) yields

for the background having a valule; at point x;, i.e.,

All techniques discussed so far amd hocand yield re-

1 '
p(bluT)= Ze 2 @0, @

p(bi|d,a,I1,7) in the light of all data pointsl; (summarized p(clp,2)= 77*E/ZME/Z(detD)llzewcTDc'

in d), the respective experimental noiggan as yet unspeci- (5)
fied set of parameterH, and all background informatiofi N

that uniquely defines the problem. The latter plays a crucial D'l"ZZEi ¢|'1(Xi)¢|'2(xi)y

role since it provides the information which we need to dis-

criminate the signal from the background. It has to do with

correlations either in the Signa| or the background, and iy\lhere we have included the normalization factor. ObViOUS'y,
strongly problem dependent. To cover a wide range of appli¢| (x)=0 for a constant function, i.eD has one eigenvector
cations, we identify the background by the fact that it is with eigenvalue zero. In order to deal with a normalizable
smoother then the signal. More restrictive specifications ar@rior, we modifyD —D + ezpotl/g and lete tend to zero in the
certainly possible for a restricted class of problems, and cafinal results. It can be shown that this is equivalent to replac-
be dealt with in a similar fashion. The smoothness of thang detD) in Eq. (5) by detD"),
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, 1
de(D’):= H i, (6) > 2e*(di*bi)z’z"iz, Gaussian
mTo;
o p(di|B;,b;,0,11,7)= bdli
where\; are the eigenvalues &f. The regularization param- e b d—'l Poisson.
eteru is a hyperparameter to be integrated out according to r %)

the rules of probabilityp(c|Z) = fdu p(c|u,Z)p(u|Z). The
prior for the scale parameter is Jeffreys’ priorp(u|Z) In the second case, the data point contains a signal contribu-
=1/u, and we obtain the multivariate studendistribution  tion s; which easily predominates the background part. In
this case the likelihood is again given by
p(c|7)=="F2(detD")YI'(E/2)(c"Dc) " ¥2.  (7)
1 2/p -2 .
e~ (di=hi=s)%207 - Gaussian

It should be pointed out that Jeffreys’ prior is not normaliz- \/2770?

able. It can, however, be considered as a limiting distributiorp(dil Bisi,bi,on1L7) =

g
of a sequence of proper priors. Since the posterior probabil- e*(bﬁsi)m, Poisson.
ity will be proper, the missing normalization constant of Jef- d;!
freys’ prior drops out. ©
So far so good, but what is the valggefor the signal? Here
B. Marginal likelihood the marginalization rul§¢l5] saves the day:

The termp(d|c,o,11,7) in Eq. (3) is actually amarginal — * —
likelihood, sincé the experimental data consist of signal plus p(di|Bi.c,oILT)= fo ds p(di|B;s; ¢, o, ) p(si| 1, 7).
background plus noisg= s+ b+ %, and the signal part is not (10)
specified inp(d|c,o,I1,Z). Hence the signal has been inte-
grated by the marginalization means of BPIB]. The idea We omitted all irrelevant entries in the conditional part of the
we put forth is an extension of a suggestion made by Sivi@robabilities. Again employing the maximum entropy prin-
[16] and Pres$17] on how to deal withduff data, a collec- ciple along with the least committal testable information,
tion of data points which are inconsistent in the sense thatamely, the first moment, we have
they lay far outside each other’s error bars. Recalling the 1
idea presented in the beginning, the spectrum consists of p(sill_[,Z):—e_silg_ (11)
regions which have no signal contribution and those which £

have a signal contribution and can be identified withdb& |, Giher words we introduce a scadefor the signal. This
Qata in the Sivia—P_ress gpproach. We introduce the propos&uantity is part of the parameter liEE. There are, as usual,
tion B; (“data point i is purely background) and the o possibilities: either the scale is known due to prior
complementB; (“data pointi contains a signal contribu- knowledge about the experimental setup, or it is not and has
tion”). In the first case the likelihood is simply the statisticsto be inferred by the rules of probability theory. Now the
of the experiment. We allow for two common situations: marginal likelihood for the case when “an unspecified signal
uncorrelated Gaussian or Poisson distribution. For data poiri$ included in the data” can be evaluated analytically, yield-
i, the likelihood reads ing

1 di—b—o?/¢

1
1+erf exp ——(d;— b))+ c2/2¢2], Gaussian

I 12
PIBCoTID=Y e+ Ly (14 16) "

E1+1/g)ditt

, Poisson,

whereQ(a,x) is the regularized incompletg functionI'(a,x)/I"(a). The entire marginal likelihood of E¢3) constitutes a

mixture model 18] of the two case§Eqs.(8) and(12)] with respective weightg=p(B;|I1,Z) and (1- 8) = p(§i|H,Z). The
paramete3 completes the listI={E, &, 8}.

p(dic.o, LD =] [(1-Bp(di[B, .¢,a,11,7)+Bp(d;|B; ,c, 0,11, 7). (13)
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10° : : model as simple as possible. The first likelihood function, the
one for the background-only case, is simpler since it is less
flexible. The measure of complexity that enters the formal-
ism is the Ockham factor, the ratio of the amplitudes of the
two likelihood functions, i.e.\/#/20;/&, which is a very
small quantity. This factor individually penalizes those data
points which are described by the more complex model, the
one containing a signal contribution. The complex model
wins only if there is no decent chance to interpret the data as
. background-only points. Qualitatively, the behavior is as fol-
-100 -50 lows: for =1 the entire spectrum is assumed to be back-
(b-d)/s, ground, and the approach minimizes the misfit between the
data and the background model. The resulting background
FIG. 2. The two contributions to the marginal likelihofEq.  would be much too large. In the opposite cage=(Q) it is
(13)] terms for the bare backgrourgolid line) and background  assumed that all data points contain a signal contribution and
plus marginalized signabashed lingcases fog=100v. Here only  tnerefore the resulting background estimate would be too
t_he _Gaussmn |Ike|lh09d is shown; the curves for for the Pmssorgma”_ In the intermediate case €Q8<1) Ockham’s factor
likelihood look qualitatively the same. is active and tries to treat as many points as consistent with
the data as background only.
The two likelihood functions of the mixture model are plot-  Given the posterior probability for the background, we
ted in Fig. 2. For each data poid there are two typical can easily compute the expectation value and confidence in-
scales in the likelihood terms: the individual eregrand the  terval:
global signal scalé€. In both models, the smaller scadg

p(djo)b,s, D)

107°

prevents the background from rising significantly above the b_:J' bip(bd, - I1,7)db

data points. As far as deviations to lower values are con- ' ! T '

cerned, the two likelihood functions behave differently: In (14
the first casgEq. (8)] the background is tightly bound to the (Ab)2= J b:— b)2n(bld. o~ I1.7)db

data points on a scale set by, whereas the second likeli- (Aby) (bi=b:)*p(bld, oL, 7)db.

hood [Eq. (12)] decays_ merely expon_entlally on a much These quantities will be given for several PIXE spectra in a
larger scale set by. So in the peak regions of the spectrum .
later section of the paper.

the second likelihood takes over, since it only weakly penal-
izes the large discrepancy between the data and the back-
ground. As desired, the approach almost entirely ignores the
signal regions of the spectrum in the determination of the The posterior probability still depends on as yet unknown
background parametecs This part of the spectrum is, how- parameterdl. Since the marginal likelihood and the prior
ever, important as far as inference of the paramefkmre  are given, it is an easy matter of applying BPT to determine
concerned. An integral part of the probabilistic approach ighe joint probability for the parameters in the 4t namely,
the so-called Ockham'’s razpt9,20], which tries to keep the E, 8, andé:

C. Probabilities for II and B;

1
p(d,01)= Zp(ND) [ d%e p(dle, oML Dp(TLT). a5

Unnecessary conditions have been omitted. We will employ the staitartl Laplace approximation to evaluate the integral

analytically. To this end we expan@dto second order around its maximum valué:,ayielding a Gaussian. In addition, since
the Gaussian is restricted to a very narrow region, we can ignore the positivity constraint imposed on the background and the
integral[Eq. (15)] can be evaluated analytically

1 A -
p(1l|d, e, 7)~ - p(I|Z)p(d|c, o 11,7) P(CILT)(27) % de( VV Tyl 2 (16)

The argument of the determinant is the Hessian. The prior for the parameters fact@@Iifd= p(E|Z) p(8|Z) p(£|Z) since
expansion ordeE, prior background probability3, and signal scal€ are logically independent. The expansion order is
certainly restricted to a moderate upper liffit yielding a flat priorp(E|Z) = 6(E<E*)/(E*). The uninformative prior for
B is p(B|7) = #(0<B=1), while for the scale parametérit is Jeffreys’[1,2] prior p(&|Z) = 1/£. For the expansion ordét
it is again Ockham'’s razor that implicitly tends to keep the model as simple as possible, i.e., it favors small expansion orders.
The driving force for the Ockham factor is in the prior fEq. (7)].

An interesting quantity is the “background probability” i.e., the probability for proposiion p(B;|d, o, Z). In order to
determine the background probability, we employ the sum rule to introduce the missing pieces of information, i.e., parameter
setll and background coefficients
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mam¢n3=fdHJ}Fcm&wppﬂLmemﬂﬂLDpanqu. (17

The probabilities foc andIl, respectively, are sharply peaked:aIndH Since the background probability is just a diagnostic
tool, it suffices to replace Eq17) by p(B;|d,o,Z) = p(B;|d, c 0, 1| ,I). The next step uses Bayes’ theorem:

“ 1 " A
P(Bi|d7c7a7H9I)= ZP(dlB, ac’o-aHaI)p(BiiH;I)

1-5

_(1-B)
- Z

EP%WJJHQMM&AQED
¥ Eat]

(1-B)p(d,|B; .é,0,11,T)

=— — " — (18
BP(dIIBt 30,0-9H’I)+ (1 —ﬂ)P(dl|Bt ’050"1-[’1-)

In the last line we inserted the normalization which is the Ill. RESULTS
sum over the two cases & being true or false. We define

an average background probability We begin the discussion of the results with the ivory

PIXE spectrum depicted in Fig. 1. The aforementioned intui-
1 N tive approach would first identify background-only points,
p(Bild, o, T)= < 2 p(Bi|d, o, 7). (19 and then fit a smooth function to these data points. The
N =1 Bayesian analysis allows one to quantify the detection of
. . . ) ) background-only points. In Fig. 3 those data points are
It is expedient to express the signal scglen units of the  4r1eq by solid circles for which the background probability
average data value: p(Bi|d, o, 7), as determined in Eq18), is greater then 90%.
N The latter value for the threshold in Fig. 3, is arbitrary, and
- i 2 (20) merely serves a diagnostic purpose. For the present example
N = the average background probabilitp(B;|d,o,Z)=0.9,
which agrees fairly well with our intuitive conception. The
This completes the formalism needed to determine all quang Expectation value for the background, as defined in Eq.

tities of interest. The remaining task is the numerical evalu(l4) is depicted in Fig. 4, and it is compared with the results

ation of the formalism, i.e., first the determination of the
obtained by the rolling-ball and GeoPIXE methods, respec-
most probable values for the parametgrss, and¢ and the tively. We observe that both the Bayesian as well as

computation of the expectation values for the backgrobind GeoPIXE results are reasonable and in close agreement,

and the respective confidence intervals. while the rolling-ball result is somewhat disappointing. The
signal contribution, which is defined here as simply the dif-
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FIG. 3. Same ivory PIXE spectrum as in Fig. 1. Data points
which are identified to carry a signal contribution are marked by FIG. 4. Comparison of the reconstructed background part of the
open circles, while the “background-only” points are marked by ivory PIXE spectrum of Fig. 1. Solid line: Bayes; dashed line: roll-
solid circles. ing ball; Diamonds: GeoPIXE.
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§ FIG. 7. Comparison of the reconstructed background part of the
0 WA\ pn L N PIXE spectrum of Fig. 6. Solid line: Bayes; dashed line: rolling
0.0 o 02 03 od 0.5 ball; diamonds: GeoPIXE.

energy (arb. L]nits) ) ]
] o ) . instead of the correct most-probable values. The inferred
FIG. 5. Signal contribution of the ivory PIXE s_pectrum of Fig. background is shown in Fig. 7. It is again compared with the
1. From top to bottom: Bayes, GeoPIXE, and rolling-ball methOds'results obtained by the rolling-ball and GeoPIXE methods,

ference between the PIXE spectrum and background, irsespectwely. In this example the Bayesian approach again

shown in Fig. 5. The computed confidence intervals are Comyields a satisfactory result, while the outcome of the other
parable to thé 6riginal error bars and the five small peaks Owethods is really disappointing. This is particularly obvious

: ; N in the extracted signal which is shown in Fig. 8. Apart from
approximately 50 counts amplitude are all significant. We he main peaks, all other structures are zero within the con-
have omitted the error bars in Fig. 5 in order not to overloa idence intervalé
the figure. In the present example the Bayesian approach ancgl We have co.mpared our method with GeoPIXE and
the GepPIXE method_ yield comparqbly go_od_ resuits, WhlleroIIing-baII methods for a variety of PIXE spectra. We have
the rolling-ball result is somewhat disappointing. The most . ;

i — , seen in the presented examples that the Bayesian approach
probable value for the signal scaleds=1.9d. A few addi-  fymishes good results. The same quality was observed in all
tional remarks are in order. The abscissa values of th@nalyzed spectra, and the Bayesian results are now used as
support-points of the cubic splines have been chosen equitandards to measure the quality of the other approaches.
distantly, with a spacing set by twice the width of the nar-jnstead of presenting a large collection of graphs we intro-
rowest signal peak. This is part of our prior informatién  §,ce a figure of merikmzzi(bm_b_Baye3/2i|b‘Bayesf {0 as-

. .. . . 1 | 1 '
which allows us to distinguish signal from background. aqq the quality of the two common methods, GeoPIXE and
Next we turn to a geological grain sample where the de'roIIing ball. The sum extends over all data points, &
tector had a dip between 8 and 10 keV. The PIXE spectru tands for the background at data poinbbtained with

in Fig. 6 is again decomposed into background-only an ethodm. As pointed out above the Bayesian result serves

signal-ggrrying dgtapﬂ The average backgroyndés standard. The results are listed in Table I. The samples are
probabllltyl_s againp(B;|d,,Z)=0.9. The signal scale is

here£=1.0d. It is noteworthy that we generally found fairly 500 [ U ' ]
good results for the background if we uée-d and 3~0.5 @
5
5000 8 J
0 ﬂ v"‘v'*”wj‘r-“ ) "vnrvv"’\" S o
4000 | | 50002 04 0.2 0.3
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FIG. 6. Geological PIXE spectrum. Data points which are iden- energy (arb. units)

tified to carry a signal contribution are marked by open circles, FIG. 8. Signal contribution of the PIXE spectrum of Fig. 6.
while the “background-only” points are depicted as solid circles. From top to bottom: Bayes, GeoPIXE, and rolling-ball mathods.
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TABLE I. Figure of meritx for the GeoPIXE(gp) and rolling-
ball (rb) methods computed for various spectra. 1.0
Name k9P k™
lvo212 —0.02 —0.19
Oto100 -0.39 —-0.22 —
Oto01 -0.37 0.00 W o5l
V0100 1.56 0.03 o
Geopl7 0.58 -0.11
AgZn18 0.74 3.65
identified by their file names. The table contains two PIXE 0.0 a—— -—
0 1 2 3 4 5 6 7

spectra of the ivory tusklvo) of an African elephant; the
study was made to determine whether you can localize the
tusks from the trace element signature, this has implications FIG. 10. Probability for the expansion ordefor the mock data
in poaching control. “Oto” stands for geological grains. set of Ref[7].
This sample is particularly interesting for us, since the detec-
tor used for the measurement showed a strange efficiendyr the expansion order, which is depicted in Fig. 10, is in-
behavior, which makes the background separation moréleed sharply peaked Bt=3. We again encounter the inter-
challenging. “Geop” is the spectrum of a geopolymer. play of data constraint and simplicity. An expansion order of
Neither of the standard methods is clearly preferable oveless than 3 is not sufficient to fit the data while an expansion
the other. In both methods it happens that the backgroungrder beyond 3 does not pay off fitwise and is therefore
goes far into the signal part or is much too small, which ispenalized by Ockham’s factor. Figure 10 also shows the
indicated by large positive or negativg values. The first typical asymmetry in this probability. The left flank is de-
row of the table corresponds to the spectrum of Fig. 3, andcribed by a Gaussian due to this likelihood, while the right
the second row to the spectrum of Fig. 6. flank follows a power-law decay dictated by Ockham’s ra-
Finally, we consider an example for which the spline ba-zor. For the optimal expansion ordé) the background is
sis is disadvantageous, and which is best treated in the Legubtracted from the mock data furnishing the desired bare
endre basis. It is the mock spectrum depicted in Fig. 9 whiclsignal also shown in Fig. 9. The signal still contains the
consists of two signal peaks, broadened by a rather broagikperimental broadening, which can now easily be deconvo-
apparatus function. The signal sits on a parabolic backluted by standard QME, since there is no background left
ground. This example was introduced in REf1] to illus-  which could give rise to ringing or other artificial structures.
trate the importance of background elimination in the quan-
tified maximum entropy scheme. In Fig. 9 the inferred
background is given for expansion orders 1—4, which corre- IV. SUMMARY
spond to pol)énomlals dOf de_(_t:])reer? Ob_ 3.kWe sede that We_need We have demonstrated how the rules of probability theory
expansion order 3 to describe the background. Expansion ©an be used to separate the signal from the background part
higher orders does, however, not improve the quality of the

. . ... of a spectrum. The probabilistic approach has been tested in
fit through the background-only data points. The probablhtya variepty of cases, a%d it appearegrihat the results were in all

cases satisfactory. Of course, the probabilistic approach is

expansion order E

20 superior to any othead hocmethod, since it provides the
frame to consistently and rigorously exploit all bits of infor-
15 | | mation available for a given problefd,2]. If, contrary to
= expectation, another approach leads to “better” results, that
e would merely mean that this method employs information
10 | . which has been withheld from the probabilistic approach.

The probabilistic approach has only one drawback: it is
slightly more laborious thaad hocmethods, which are usu-
05 | 1 ally geared to be computationally simple and fast. The reader
who is mainly interested in a quick and dirty approach can,
however, simplify the formalism by setting~0.5 and¢

x (arb. units)

0.0 #= et e %(1/N)2iN:1di. The remaining task is merely the maximi-
0.0 0.2 0.4 06 0.8 1.0 zation of the marginal likelihoo@Eq. (13)] with respect to
y (arb. units) the background-expansion coefficien{s which can be ac-

FIG. 9. Result for the mock data of R7] for expansion orders complished by standard library packages. The computational
1-4 as indicated on the curves. The result for expansion order 4 @ffort is then comparable to that of nonlinear least-squares
depicted by a solid line. The mock spectrum is represented by soli@roblems. In general, the parametétave to be optimized
circles plus error bars. The reconstructed signal along with the reaccording to their posterior probability. But even for a data
spective confidence intervals is shown at the bottom of the figureet comprising 2000 data points the entire analysis takes ap-
(squares proximately 1 min on a medium-sized workstation.
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