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Signal and background separation
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In many areas of research the measured spectra consist of a collection of ‘‘peaks’’ — the sought-for signals
— which sit on top of an unknown background. The subtraction of the background in a spectrum has been the
subject of many investigations and different techniques, varying from filtering to fitting polynomial functions,
have been developed. These techniques yield results that are not always satisfactory and often even misleading.
Based upon the rules of probability theory, we derive a formalism to separate the background from the signal
part of a spectrum in a rigorous and self-consistent manner. We compare the results of the probabilistic
approach to those obtained by two commonly used methods in an analysis of particle induced x-ray emission
spectra.@S1063-651X~99!10206-X#

PACS number~s!: 02.50.Rj, 07.60.2j, 29.30.Kv
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I. INTRODUCTION

The analysis of spectra is generally hampered by the p
ence of noise and an unknown background. This is espec
true for particle induced x-ray emission~PIXE! spectra,
where projectile and secondary electron bremsstrahlung
to a significant background. We will therefore use PIX
spectra as real-world test examples.

The central problem to be tackled in this paper is b
explained using the PIXE spectrum depicted in Fig. 1.
consists of a fairly smooth background plus signal with b
very large as well as small peaks which are comparabl
height to the background. The goal is to determine the ba
ground part of the spectrum, and by eliminating it from t
data points to infer the desired signal. The problem falls i
the realm of inductive logic which tells us how to deal wi
partial truth: We have experimental data, a vague theore
conception, and additional prior knowledge. The informat
is, however, not stringent enough for a unique result.~Baye-
sian! probability theory~BPT! @1,2#, or as Jaynes@3# appro-
priately called it ‘‘the logic of science,’’ provides the consi
tent frame to exploit all bits of information rigorously. A
nice tutorial type of introduction to BPT is given by Sivia
his bookData Analysis — A Bayesian Tutorial@4#.

Before discussing the details of the probabilistic a
proach, we want to mention that several techniques are a
able for determining the background in a spectrum. The
ditional method is to estimate the background by fitting a
of ‘‘semiempirical’’ polynomial functions@5,6# to the data
while limiting the expansion order to keep the fit from bei
influenced by sharp peaks in the spectrum. These techni
have been optimized@7# by the use of orthonormal basis se
for the fitting functions, with initialization routines that im
prove initial guesses of the functions and their coefficie
for the final fitting during the full nonlinear least squar
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fitting process. Modern methods tend toward the eliminat
of the background by digital filtering@8,9# or stripping@10#,
avoiding any assumption regarding the functional form
the background.

In basic polynomial fitting routines the largest problem
were the unstable nature of the fits, mainly due to the ad
tion of more degrees of freedom to the nonlinear fitting p
gram. These problems were alleviated by using polynom
with some physical basis, as well as by empirical improv
ments to the functions. Nonlinear fitting programs simul
neously determine the signal peaks and the coefficients o
background polynomials based on iterative least squa
methods. The expansion order of these polynomials w
typically less than 10, increasing the number of degrees
freedom by that number. This often led to unstable fits, w
a resulting increase in analysis time with human input
correct the procedure.

Digital filtering is based on the convolution of the spe
trum with a top-hat filter, as in theGUPIX program@8#, or a
frequency differentiated nonlinear digital filter~‘‘rolling
ball’’ !, as in the program used at the Schonland Resea
Center in Johannesburg@9#. The top-hat filter has a centra

FIG. 1. Illustrative PIXE spectrum of ivory.
6527 ©1999 The American Physical Society
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upper lobe consisting of a number of positive coefficien
and two negative outer lobes each having a number of n
tive coefficients. The convolution replaces the data con
of every channel by this convolving filter. The width of th
filter is based on the energy resolution of the measurem
and therefore is effective in areas where the backgro
changes linearly over any region of around 400 eV, which
generally a good approximation.

In the ‘‘rolling ball’’ method @9# the differentiated nonlin-
ear digital filter is the equivalent of rolling a ball below th
data points and marking out the background as the locu
the ball at each point. To account for the varying peak wi
of the energy spectra, the diameter of the ball gradually
creases as a function of energy. The mathematical funct
involved are relatively simple arithmetic functions that c
be efficiently computed. There is some distortion of t
peaks, but this does not adversely affect the results.

The stripping of the peaks in GeoPIXE@10# is based on
estimating the background by iterative suppression of
counts in channels containing peak information. These te
niques are less efficient in areas where the background s
changes relatively quickly, leading to overfiltering or stri
ping in that case. The advantage of filtering and stripping
the elimination of extra free parameters in the nonlinear
routine in the analysis program, and the relative robustn
of these techniques.

II. BAYESIAN APPROACH

All techniques discussed so far aread hocand yield re-
sults of unpredictable reliability. A first consistent probab
listic approach had been suggested by us@11# to separate the
signal from the noise and the background and at the s
time deconvolve the apparatus function within quantifi
maximum entropy~QME!. The main goal there was to de
rive a formalism which still allows the use of standard~com-
mercial! QME packages with merely modified input. In re
turn we had to put up with a couple of approximations. He
we will present the full probabilistic approach leaving t
framework of QME. The basic idea is best explained guid
by the PIXE spectrum mentioned in Fig. 1. Intuitively, on
has a fairly clear conception of the essence of the ba
ground. Our intuition tells us the following: Find the region
of the spectrum that have no signal contribution, and fi
smooth function to the so-determined background d
points. How can this idea by quantified? The answer is p
vided by BPT@1,2,4#. Here, we are seeking the probabili
for the background having a valuebi at point xi , i.e.,
p(bi ud,s,P,I) in the light of all data pointsdi ~summarized
in d), the respective experimental noises, an as yet unspeci
fied set of parametersP, and all background informationI
that uniquely defines the problem. The latter plays a cru
role since it provides the information which we need to d
criminate the signal from the background. It has to do w
correlations either in the signal or the background, and
strongly problem dependent. To cover a wide range of ap
cations, we identify the background by the fact that it
smoother then the signal. More restrictive specifications
certainly possible for a restricted class of problems, and
be dealt with in a similar fashion. The smoothness of
,
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background is ensured by expanding it in an appropriate
of basis functionsfn(x),

bi5 (
n51

E

fn~xi !cn5 (
n51

E

F i ,ncn ~1!

or in vector notationb5Fc. HereE is the expansion order
which is part of the parameter listP. The basis set which we
will employ in the examples are either Legendre polynomi
or cubic splines. The formalism is, however, valid for a
basis set and for other applications a different basis migh
more appropriate. The probability for the background vec
b is

p~bud,s,P,I!5E dEc p~buc,d,s,P,I!p~cud,s,P,I!

5E dEc d~b2Fc!p~cud,s,P,I!, ~2!

where we have used the probabilistic marginalization r
@4#. According to Bayes’ theorem@12,4#, the desired prob-
ability p(cud,s,P,I) can be expressed as

p~cud,s,P,I!5
1

Z
p~duc,s,P,I!p~cus,P,I!. ~3!

The Bayes theorem splits the problem into the likeliho
p(duc,s,P,I), i.e., the error statistics of the experiment a
the priorp(cus,P,I). The latter is the place to feed in all w
know about the solution irrespective of the experimen
data. The normalizationZ can most easily be derived in th
end by making sure that*dEc p(cud,s,P,I)51.

A. Prior probability

We assume that the discriminating feature of the ba
ground is its smoothness. Consequently, the global first
rivative is a characteristic quantity appropriate as testa
information@13,14#. Hence the prior probability according t
the maximum entropy principle@13,14# becomes

p~bum,I!5
1

Z
e2m(

i
„b8(xi )…

2
, ~4!

whereb8(xi) stands for the slope of the background at po
xi . The hyperparameterm will be marginalized below. The
expansion in Eq.~1! yields

p~cum,I!5p2E/2mE/2~detD !1/2e2mcTDc,
~5!

Dl 1 ,l 2
5(

i

N

f l 1
8 ~xi !f l 2

8 ~xi !,

where we have included the normalization factor. Obvious
f l8(x)[0 for a constant function, i.e.,D has one eigenvecto
c0 with eigenvalue zero. In order to deal with a normalizab
prior, we modifyD→D1ec0c0

T and lete tend to zero in the
final results. It can be shown that this is equivalent to repl
ing det(D) in Eq. ~5! by det(D8),
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PRE 59 6529SIGNAL AND BACKGROUND SEPARATION
det~D8!ª)
i

l i.0

l i , ~6!

wherel i are the eigenvalues ofD. The regularization param
eterm is a hyperparameter to be integrated out according
the rules of probabilityp(cuI)5*dm p(cum,I)p(muI). The
prior for the scale parameterm is Jeffreys’ prior p(muI)
51/m, and we obtain the multivariate student-t distribution

p~cuI!5p2E/2~detD8!1/2G~E/2!~cTDc!2E/2. ~7!

It should be pointed out that Jeffreys’ prior is not normal
able. It can, however, be considered as a limiting distribut
of a sequence of proper priors. Since the posterior proba
ity will be proper, the missing normalization constant of J
freys’ prior drops out.

B. Marginal likelihood

The termp(duc,s,P,I) in Eq. ~3! is actually amarginal
likelihood, since the experimental data consist of signal p
background plus noised5s1b1h, and the signal part is no
specified inp(duc,s,P,I). Hence the signal has been int
grated by the marginalization means of BPT@15#. The idea
we put forth is an extension of a suggestion made by S
@16# and Press@17# on how to deal withduff data, a collec-
tion of data points which are inconsistent in the sense
they lay far outside each other’s error bars. Recalling
idea presented in the beginning, the spectrum consist
regions which have no signal contribution and those wh
have a signal contribution and can be identified with theduff
data in the Sivia-Press approach. We introduce the prop
tion Bi ~‘‘data point i is purely background’’! and the

complementB̄i ~‘‘data point i contains a signal contribu
tion’’ !. In the first case the likelihood is simply the statisti
of the experiment. We allow for two common situation
uncorrelated Gaussian or Poisson distribution. For data p
i, the likelihood reads
to

n
il-
-

s
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e
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h

si-

:
int

p~di uBi ,bi ,s,P,I!55
1

A2ps i
2

e2(di2bi )
2/2s i

2
, Gaussian

e2bi
bi

di

di !
, Poisson.

~8!

In the second case, the data point contains a signal contr
tion si which easily predominates the background part.
this case the likelihood is again given by

p~di uB̄isi ,bi ,s,P,I!55
1

A2ps i
2
e2(di2bi2si )

2/2s i
2
, Gaussian

e2(bi1si )
~bi1si !

di

di !
, Poisson.

~9!

So far so good, but what is the valuesi for the signal? Here
the marginalization rule@15# saves the day:

p~di uB̄i ,c,s,P,I!5E
0

`

dsi p~di uB̄isi ,c,s,I!p~si uP,I!.

~10!

We omitted all irrelevant entries in the conditional part of t
probabilities. Again employing the maximum entropy pri
ciple along with the least committal testable informatio
namely, the first moment, we have

p~si uP,I!5
1

j
e2si /j. ~11!

In other words we introduce a scalej for the signal. This
quantity is part of the parameter listP. There are, as usua
two possibilities: either the scale is known due to pr
knowledge about the experimental setup, or it is not and
to be inferred by the rules of probability theory. Now th
marginal likelihood for the case when ‘‘an unspecified sign
is included in the data’’ can be evaluated analytically, yie
ing
p~di uB̄i ,c,s,P,I!55
1

2j S 11erfS di2bi2s i
2/j

A2s i
2 D D expS 2

1

j
~di2bi !1s i

2/2j2D , Gaussian

ebi /jQ„di11,bi~111/j!…

j~111/j!di11
, Poisson,

~12!

whereQ(a,x) is the regularized incompleteg function G(a,x)/G(a). The entire marginal likelihood of Eq.~3! constitutes a

mixture model@18# of the two cases@Eqs.~8! and~12!# with respective weightsb5p(Bi uP,I) and (12b)5p(B̄i uP,I). The
parameterb completes the listP5$E,j,b%.

p~duc,s,P,I!5)
i

@~12b!p~di uBi ,c,s,P,I!1bp~di uB̄i ,c,s,P,I!#. ~13!
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The two likelihood functions of the mixture model are plo
ted in Fig. 2. For each data pointdi there are two typical
scales in the likelihood terms: the individual errors i and the
global signal scalej. In both models, the smaller scales i
prevents the background from rising significantly above
data points. As far as deviations to lower values are c
cerned, the two likelihood functions behave differently:
the first case@Eq. ~8!# the background is tightly bound to th
data points on a scale set bys i , whereas the second likeli
hood @Eq. ~12!# decays merely exponentially on a muc
larger scale set byj. So in the peak regions of the spectru
the second likelihood takes over, since it only weakly pen
izes the large discrepancy between the data and the b
ground. As desired, the approach almost entirely ignores
signal regions of the spectrum in the determination of
background parametersc. This part of the spectrum is, how
ever, important as far as inference of the parametersP are
concerned. An integral part of the probabilistic approach
the so-called Ockham’s razor@19,20#, which tries to keep the

FIG. 2. The two contributions to the marginal likelihood@Eq.
~13!# terms for the bare background~solid line! and background
plus marginalized signal~dashed line! cases forj5100s. Here only
the Gaussian likelihood is shown; the curves for for the Pois
likelihood look qualitatively the same.
e
-

l-
ck-
e

e

s

model as simple as possible. The first likelihood function,
one for the background-only case, is simpler since it is l
flexible. The measure of complexity that enters the form
ism is the Ockham factor, the ratio of the amplitudes of t
two likelihood functions, i.e.,Ap/2s i /j, which is a very
small quantity. This factor individually penalizes those da
points which are described by the more complex model,
one containing a signal contribution. The complex mod
wins only if there is no decent chance to interpret the data
background-only points. Qualitatively, the behavior is as f
lows: for b51 the entire spectrum is assumed to be ba
ground, and the approach minimizes the misfit between
data and the background model. The resulting backgro
would be much too large. In the opposite case (b50) it is
assumed that all data points contain a signal contribution
therefore the resulting background estimate would be
small. In the intermediate case (0,b,1) Ockham’s factor
is active and tries to treat as many points as consistent
the data as background only.

Given the posterior probability for the background, w
can easily compute the expectation value and confidence
terval:

bī5E bip~bud,s,P,I!db,

~14!

~Dbi !
25E ~bi2bī !

2p~bud,s,P,I!db.

These quantities will be given for several PIXE spectra in
later section of the paper.

C. Probabilities for P and Bi

The posterior probability still depends on as yet unkno
parametersP. Since the marginal likelihood and the prio
are given, it is an easy matter of applying BPT to determ
the joint probability for the parameters in the listP, namely,
E, b, andj:

n

integral
e
and the

is

orders.

rameter
~15!

Unnecessary conditions have been omitted. We will employ the standard Laplace approximation to evaluate the
analytically. To this end we expandc to second order around its maximum value atĉ, yielding a Gaussian. In addition, sinc
the Gaussian is restricted to a very narrow region, we can ignore the positivity constraint imposed on the background
integral @Eq. ~15!# can be evaluated analytically

p~Pud,s,I!'
1

Z
p~PuI!p~duĉ,s,P,I!p~ ĉuP,I!~2p!E/2 det~¹¹Tcu ĉ!21/2. ~16!

The argument of the determinant is the Hessian. The prior for the parameters factors intop(PuI)5p(EuI)p(buI)p(juI) since
expansion orderE, prior background probabilityb, and signal scalej are logically independent. The expansion order
certainly restricted to a moderate upper limitE* yielding a flat priorp(EuI)5u(E<E* )/(E* ). The uninformative prior for
b is p(buI)5u(0<b<1), while for the scale parameterj it is Jeffreys’@1,2# prior p(juI)51/j. For the expansion orderE
it is again Ockham’s razor that implicitly tends to keep the model as simple as possible, i.e., it favors small expansion
The driving force for the Ockham factor is in the prior forc @Eq. ~7!#.

An interesting quantity is the ‘‘background probability’’ i.e., the probability for propositionBi , p(Bi ud,s,I). In order to
determine the background probability, we employ the sum rule to introduce the missing pieces of information, i.e., pa
setP and background coefficientsc
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p~Bi ud,s,I!5E dPE dEc p~Bi ud,c,s,P,I!p~cud,s,P,I!p~Pud,s,I!. ~17!

The probabilities forc andP, respectively, are sharply peaked atĉ andP̂. Since the background probability is just a diagnos

tool, it suffices to replace Eq.~17! by p(Bi ud,s,I)5p(Bi ud,ĉ,s,P̂,I). The next step uses Bayes’ theorem:

~18!
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In the last line we inserted the normalization which is t
sum over the two cases ofBi being true or false. We defin
an average background probability

p~Bi ud,s,I!5
1

N (
i 51

N

p~Bi ud,s,I!. ~19!

It is expedient to express the signal scalej in units of the
average data value:

d̄5
1

N (
i 51

N

di . ~20!

This completes the formalism needed to determine all qu
tities of interest. The remaining task is the numerical eva
ation of the formalism, i.e., first the determination of t
most probable values for the parametersE, b, andj and the
computation of the expectation values for the backgrounb
and the respective confidence intervals.

FIG. 3. Same ivory PIXE spectrum as in Fig. 1. Data poi
which are identified to carry a signal contribution are marked
open circles, while the ‘‘background-only’’ points are marked
solid circles.
n-
-

III. RESULTS

We begin the discussion of the results with the ivo
PIXE spectrum depicted in Fig. 1. The aforementioned int
tive approach would first identify background-only point
and then fit a smooth function to these data points. T
Bayesian analysis allows one to quantify the detection
background-only points. In Fig. 3 those data points
marked by solid circles for which the background probabil
p(Bi ud,s,I), as determined in Eq.~18!, is greater then 90%
The latter value for the threshold in Fig. 3, is arbitrary, a
merely serves a diagnostic purpose. For the present exa
the average background probabilityp(Bi ud,s,I)50.9,
which agrees fairly well with our intuitive conception. Th

expectation value for the backgroundbī , as defined in Eq.
~14!, is depicted in Fig. 4, and it is compared with the resu
obtained by the rolling-ball and GeoPIXE methods, resp
tively. We observe that both the Bayesian as well
GeoPIXE results are reasonable and in close agreem
while the rolling-ball result is somewhat disappointing. T
signal contribution, which is defined here as simply the d

y FIG. 4. Comparison of the reconstructed background part of
ivory PIXE spectrum of Fig. 1. Solid line: Bayes; dashed line: ro
ing ball; Diamonds: GeoPIXE.
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ference between the PIXE spectrum and background
shown in Fig. 5. The computed confidence intervals are c
parable to the original error bars and the five small peak
approximately 50 counts amplitude are all significant. W
have omitted the error bars in Fig. 5 in order not to overlo
the figure. In the present example the Bayesian approach
the GeoPIXE method yield comparably good results, wh
the rolling-ball result is somewhat disappointing. The m
probable value for the signal scale isj51.9d̄. A few addi-
tional remarks are in order. The abscissa values of
support-points of the cubic splines have been chosen e
distantly, with a spacing set by twice the width of the na
rowest signal peak. This is part of our prior informationI,
which allows us to distinguish signal from background.

Next we turn to a geological grain sample where the
tector had a dip between 8 and 10 keV. The PIXE spectr
in Fig. 6 is again decomposed into background-only a
signal-carrying data points. The average backgrou
probability is againp(Bi ud,s,I)50.9. The signal scale is
herej51.0d̄. It is noteworthy that we generally found fairl
good results for the background if we usej'd̄ andb'0.5

FIG. 5. Signal contribution of the ivory PIXE spectrum of Fi
1. From top to bottom: Bayes, GeoPIXE, and rolling-ball metho

FIG. 6. Geological PIXE spectrum. Data points which are ide
tified to carry a signal contribution are marked by open circl
while the ‘‘background-only’’ points are depicted as solid circle
is
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e
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e
ui-
-

-
m
d
-

instead of the correct most-probable values. The infer
background is shown in Fig. 7. It is again compared with
results obtained by the rolling-ball and GeoPIXE metho
respectively. In this example the Bayesian approach ag
yields a satisfactory result, while the outcome of the oth
methods is really disappointing. This is particularly obvio
in the extracted signal which is shown in Fig. 8. Apart fro
the main peaks, all other structures are zero within the c
fidence intervals.

We have compared our method with GeoPIXE a
rolling-ball methods for a variety of PIXE spectra. We ha
seen in the presented examples that the Bayesian appr
furnishes good results. The same quality was observed in
analyzed spectra, and the Bayesian results are now use
standards to measure the quality of the other approac
Instead of presenting a large collection of graphs we int
duce a figure of meritkm5( i(bi

m2bi
Bayes)/( i ubi

Bayesu, to as-
sess the quality of the two common methods, GeoPIXE
rolling ball. The sum extends over all data points, andbi

m

stands for the background at data pointi obtained with
methodm. As pointed out above the Bayesian result serv
as standard. The results are listed in Table I. The samples

.

-
,

FIG. 7. Comparison of the reconstructed background part of
PIXE spectrum of Fig. 6. Solid line: Bayes; dashed line: rolli
ball; diamonds: GeoPIXE.

FIG. 8. Signal contribution of the PIXE spectrum of Fig.
From top to bottom: Bayes, GeoPIXE, and rolling-ball mathods
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PRE 59 6533SIGNAL AND BACKGROUND SEPARATION
identified by their file names. The table contains two PIX
spectra of the ivory tusk~Ivo! of an African elephant; the
study was made to determine whether you can localize
tusks from the trace element signature, this has implicati
in poaching control. ‘‘Oto’’ stands for geological grain
This sample is particularly interesting for us, since the det
tor used for the measurement showed a strange efficie
behavior, which makes the background separation m
challenging. ‘‘Geop’’ is the spectrum of a geopolymer.

Neither of the standard methods is clearly preferable o
the other. In both methods it happens that the backgro
goes far into the signal part or is much too small, which
indicated by large positive or negativek1 values. The first
row of the table corresponds to the spectrum of Fig. 3,
the second row to the spectrum of Fig. 6.

Finally, we consider an example for which the spline b
sis is disadvantageous, and which is best treated in the
endre basis. It is the mock spectrum depicted in Fig. 9 wh
consists of two signal peaks, broadened by a rather br
apparatus function. The signal sits on a parabolic ba
ground. This example was introduced in Ref.@11# to illus-
trate the importance of background elimination in the qu
tified maximum entropy scheme. In Fig. 9 the inferr
background is given for expansion orders 1–4, which co
spond to polynomials of degrees 0–3. We see that we n
expansion order 3 to describe the background. Expansio
higher orders does, however, not improve the quality of
fit through the background-only data points. The probabi

TABLE I. Figure of meritk for the GeoPIXE~gp! and rolling-
ball ~rb! methods computed for various spectra.

Name kgp k rb

Ivo212 20.02 20.19
Oto100 20.39 20.22
Oto01 20.37 0.00
Ivo100 1.56 0.03
Geop17 0.58 20.11
AgZn18 0.74 3.65

FIG. 9. Result for the mock data of Ref.@7# for expansion orders
1–4 as indicated on the curves. The result for expansion order
depicted by a solid line. The mock spectrum is represented by s
circles plus error bars. The reconstructed signal along with the
spective confidence intervals is shown at the bottom of the fig
~squares!.
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for the expansion order, which is depicted in Fig. 10, is
deed sharply peaked atE53. We again encounter the inte
play of data constraint and simplicity. An expansion order
less than 3 is not sufficient to fit the data while an expans
order beyond 3 does not pay off fitwise and is therefo
penalized by Ockham’s factor. Figure 10 also shows
typical asymmetry in this probability. The left flank is de
scribed by a Gaussian due to this likelihood, while the rig
flank follows a power-law decay dictated by Ockham’s r
zor. For the optimal expansion order~3! the background is
subtracted from the mock data furnishing the desired b
signal also shown in Fig. 9. The signal still contains t
experimental broadening, which can now easily be decon
luted by standard QME, since there is no background
which could give rise to ringing or other artificial structure

IV. SUMMARY

We have demonstrated how the rules of probability the
can be used to separate the signal from the background
of a spectrum. The probabilistic approach has been teste
a variety of cases, and it appeared that the results were i
cases satisfactory. Of course, the probabilistic approac
superior to any otherad hocmethod, since it provides the
frame to consistently and rigorously exploit all bits of info
mation available for a given problem@1,2#. If, contrary to
expectation, another approach leads to ‘‘better’’ results, t
would merely mean that this method employs informati
which has been withheld from the probabilistic approa
The probabilistic approach has only one drawback: it
slightly more laborious thanad hocmethods, which are usu
ally geared to be computationally simple and fast. The rea
who is mainly interested in a quick and dirty approach c
however, simplify the formalism by settingb'0.5 andj
'(1/N)( i 51

N di . The remaining task is merely the maxim
zation of the marginal likelihood@Eq. ~13!# with respect to
the background-expansion coefficientsci , which can be ac-
complished by standard library packages. The computatio
effort is then comparable to that of nonlinear least-squa
problems. In general, the parametersP have to be optimized
according to their posterior probability. But even for a da
set comprising 2000 data points the entire analysis takes
proximately 1 min on a medium-sized workstation.

is
lid
e-
re

FIG. 10. Probability for the expansion orderE for the mock data
set of Ref.@7#.
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